PHILIPPGROUP

General Installation and Application Instruction

Transport and mounting systems for prefabricated building

Technical department				
	Our staff will be pleased to support your planning phase with suggestions for the installation and use of our transport and mounting systems for precast concrete construction.			
Special designs				
	Customized to your particular needs.			
Practical tests on site				
	We ensure that our concepts are tailored precisely to your requirements.			
Inspection reports				
	For documentation purposes and your safety.			
On-site service				
	Our engineers will be pleased to instruct your technicians and production person- nel at your plant, to advise on the installation of precast concrete parts and to assist you in the optimisation of your production processes.			
High safety level when using	our products			
	Close cooperation with federal materials testing institutes (MTIs), and official approvals for the use of our products and solutions whenever necessary.			
Software solutions				
	The latest design software, animated videos and CAD libraries can always be found under www.philipp-gruppe.de.			
Engineering contact				
	Phone: +49 (0) 6021 / 40 27-318 Fax: +49 (0) 6021 / 40 27-340 E-mail: technik@philipp-gruppe.de			
Sales contact				
	Phone: +49 (0) 6021 / 40 27-300 Fax: +49 (0) 6021 / 40 27-340 E-mail: vertrieb@philipp-gruppe.de			

Content

General notes	Page	4
PHILIPP Transport anchor systems	Page	5
Range of applications for Transport anchors and lifting devices	Page	6
Determination of the anchor load		
and choice of Transport anchor system	Page	7
Unit weight	Page	7
Mould adhesion	Page	7
Dynamic factor	Page	8
Number and position of the anchors	Page	8
Load directions	Page	9
Increase of the anchor load due to diagonal tension	Page	9
Design concept	Page	10
Calculation example of a standard application	Page	11
Boundary conditions	Page	12
Concrete strength	Page	12
Reinforcement layout	Page	12
Application restrictions	Page	12
Corrosion protection	Page	12
Boundary conditions / marking	Page	13
Static systems	Page	14
Colour code	Page	15

General notes

The General Installation Instruction helps to determine the loads acting on anchors and lifting devices in precast concrete units. It is only valid in combination with the particular Installation and Application Instruction of the used PHILIPP Transport anchor system and provides further information, e.g. about corrosion protection.

In most cases the PHILIPP Transport anchor systems consist of an anchor, which is cast-in concrete, the corresponding lifting device and accessories. The general technical terms used to describe the Transport anchor systems are explained in Picture 1. According to the German regulations VDI/BV-BS 6205 and DGUV 101-001 only original parts of the PHILIPP Transport anchor systems shall be used which belong together. The combination of lifting devices coming from other manufacturers with PHILIPP Transport anchors is not allowed.

Depending on the PHILIPP Transport anchor system used either the "Safety rules for transport anchors and systems for precast concrete units" (DGUV 101-001) or the VDI/BV-BS 6205 Guideline "Lifting inserts and lifting insert systems for precast concrete elements" must be taken into account in addition.

All PHILIPP Transport anchors are designed in a way that the anchors have a threefold safety and the lifting devices a fourfold safety against steel failure. The values for permissible loads given in tables have a 2.5-fold safety against concrete failure at a minimum concrete strength of f_{cc} 15 N/mm². The system components are marked or colour-coded with the load class, type, manufacturer and CE and therefore relatable to each other. The quality assurance of the PHILIPP Transport anchor systems is supervised by a permanent quality control according to DIN ISO 9001.

Concrete

Concrete strengths f_{cc} given in PHILIPP Installation and Application Instructions are based on concrete cube strengths at the time of first lifting.

If you have further questions please have a look at our website www.philipp-group.de or contact our technical department via the hotline +49 6021/4017- 318 or e-mail technik@philipp-group.de.

Only the latest versions of the Installation and Application Instructions are valid. Older versions become invalid when new releases are published. The user is responsible to check his documents for updates and completeness regularly.

PHILIPPGROUP

PHILIPP Transport anchor systems

Picture 3 Transport loop system (System TPS)

Range of applications for transport anchors and lifting devices

Picture 7 Lifting loop with threaded end

PHILIPP Transport anchors are designed for the transport of precast concrete units only. Multiple use within the transport chain (from production to installation of the unit) means no repeated usage. An application for a repeated usage (e.g. ballasts for cranes) is only allowed if the Installation and Application Instruction of a specific transport anchor does not exclude it explicitly. The conformity with the German approval "Products, connecting elements and components made of stainless steel" (DIBt Berlin, approval no.: Z-30.3-6) must be checked. When ordering the requirement for a repeated usage has to be mentioned separately.

The PHILIPP Threaded transport anchor systems can be installed flush to the surface as well as in recessed position, inserts are also available in stainless steel. Consequently, the thread has to be protected against dirt by using a plastic sealing cap. Typical applications for the Threaded transport anchors – straight tail are in thin, wall like elements. Shorter Threaded transport anchors are mostly used in plain elements e.g. slabs. For the Threaded transport anchor systems various lifting devices can be used such as the PHILIPP Lifting loop with threaded end (Picture 7), the PHILIPP Lifty (Picture 8) or the PHILIPP Wirbelstar (Picture 9).

RD56 and RD60 are special anchor sizes of the PHILIPP Threaded transport anchor system and used for high forces and thin elements. For these big anchors only the Wirbelstar is allowed as corresponding lifting device. In shafts, tanks and manholes the PHILIPP Transport loop system (Picture 10) is used. This PHILIPP Transport loop system is designed especially for this field of application.

PHILIPP Spherical head anchors are installed by means of a recess former in thicker units and slabs. As corresponding (and only) lifting device the PHILIPP Spherical head lifting clutch is used (Picture 11).

Another anchor system which requires a special recess former is the PHILIPP Hole anchor system. For this system the PHILIPP Ring clutch (Picture 12) is used as one and only lifting device.

PHILIPP Cast-in lifting hoops are installed with an overhang to the elements surface and can be used e.g. in solid concrete elements with high loads.

Angled loops, another anchor type based on wire loops, made by PHILIPP are installed in a recessed position in slabs etc. The recess for the lifting hook has to be made by the user himself.

Safety, economy and handling during transport and mounting of precast units are the basic selection criteria for the anchor system. For the design all forces and load directions during transport must be compared with the permissible load of the anchor. In the following the different factors for loads acting on an anchor with regard to the design process are specified.

These different factors are:

- Unit weight
- Mould adhesion
- Tension type (axial, diagonal or lateral tension)
- Dynamic factor (e.g. crane speed)
- Number and position of anchors
- Concrete strength at first lifting

Unit weight

The weight of 1 t corresponds to 10 kN.

Mould adhesion

Lifting the unit out of the mould can result in much higher forces than the actual unit weight. This increase of the load depends on the mould type and the contact area between unit and mould.

In order to calculate the unit weight F_G of reinforced concrete elements, the volume V and the specific weight W are needed. For reinforced concrete elements the specific weight ρ_G of 25 kN/m³ is taken (see. Design concept, equation (1)). If the unit has a high percentage of reinforcement or big steel elements are in-

Table 1: Guide values for the mould adhesion 9_{adh}			
Mould type	q _{adh} [kN/m²]		
Oiled mould	1.0		
Finished timber mould	2.0		
Rough timber mould	3.0		

With highly structured moulds (e.g. π -slabs resp. double T-beam, picture 15) the values for mould adhesion can be two times and more. The calculated load increase must be added to the unit weight (see Design concept, page 10, equation 2).

Dynamic factor

Another important criterion for the determination of existing anchor loads are dynamic forces. These forces occur during hoisting, transportation and placing of the concrete unit. For the determination of the forces acting on the transport anchor all conditions during lifting and handling at the construction site must be considered. The worst case, i.e. highest dynamic factor, must be taken into account.

Then, the determined static anchor load must be multiplied with the dynamic factor given in table 2 to get the dynamic anchor load (see Design concept, page 10, equation (4) and (5)).

Table 2: Dynamic factor Ψ _{dyn} according to VDI / BV-BS 6205			
Hoisting condition	Dynamic factor Ψ_{dyn}		
Tower crane, portal crane, mobile crane	1.3		
Lifting and transport on flat terrain	2.5		
Lifting and transport on rough terrain	≥ 4.0		

Number and position of the anchors

The type of rigging hardware depends on the number of anchors. Lifting tackles with one or two legs can be considered as statically determinate systems (Picture 31-33). With a three leg lifting tackle the anchors are also statically determinate if the legs resp. anchors are not arranged in line (Picture 25). Lifting tackles with more than three legs are statically indeterminate (Picture 27 and 30) if no appropriate measures are taken (e.g. equalizer beam or compensation rig, Picture 26+28+29) so that the load is balanced on all legs.

In principle, the anchors should be arranged as symmetrically as possible to the centre of gravity. If this is not possible, the anchors will get different loads. The loading depends on the distance between the anchor and the centre of gravity and must be calculated in each case separately.

When rigging with more legs (statically indeterminate system) the anchors must be designed in such a way that two anchors can carry the overall load (DGUV 100-500).

Depending on the different transport conditions and number of used anchors different calculations have to be done (see Design concept).

Load directions

In principle, there are three different types of load directions:

Axial tension: An anchor is loaded along its longitudinal axis (Picture 16).

Diagonal tension: The load application takes effect under an angle of inclination β to the longitudinal axis of the anchor. In general, this diagonal tension occurs when the anchor is installed in the front side of a panel (Picture 17). If nothing else is specified in the particular installation instruction an appropriate reinforcement for diagonal tension shall be installed as soon as $\beta \ge 12.5^{\circ}$.

Lateral tension: An anchor installed at the front side of a panel is loaded with lateral tension if the inclination is under an angle γ to the panel plane (Picture 18). The extreme case (90°-inclination) occurs if a lying manufactured unit must be tilted up. When tilting with a 2-leg lifting tackle a combination of diagonal and lateral tension occurs. This load case is called diagonal-lateral tension (Picture 19). If nothing else is specified in the particular installation instruction an appropriate reinforcement for lateral tension shall be installed as soon as $\gamma \ge 15^\circ$. For diagonal-lateral tension the additional reinforcement especially for diagonal tension is not necessary.

Increase of the anchor load due to diagonal tension

If the anchor is loaded by a diagonal tension the resulting force acting on the transport anchor, the lifting device and the tackle increases.

This increase depends on the inclination angle β (Picture 17, and Design concept).

Table 3: Diagonal tension factor z			
Inclination angle β	Diagonal tension factor z		
0.0°	1.00		
15.0°	1.04		
22.5°	1.08		
30.0°	1.15		
37.5°	1.26		
45.0°	1.41		

An inclination β > 60° is not allowed due to the large increase of forces (DGUV 100-500).

Design concept

- A_f = Area of the concrete unit [m²]
- V = Volume of the precast element [m³]
- ρ_{G} = Density of the concrete [kN/m³]
- F_G = Weight of the precast element [kN]
- F_Z = Axial tension / diagonal tension (tensile load due to a load acting parallel to the longitudinal axis of the lifting anchor)
- F_Q = Lateral tension (shear load due to a load acting perpendicular to the longitudinal axis of the lifting anchor)
- q_{adh} = Basic value of combined adhesion and form friction
- F_{adh} = Action due to adhesion and form friction
- F_{total} = Total load (F_G + F_G lifting device + F_G lifting tackle)
- z = Diagonal tension factor $(1 / \cos \beta)$
- n = Number of bearing anchors
- Ψ_{dyn} = Dynamic factor
- α = Inclination of the ropes
- β = Inclination between the axis of the rope and the longitudinal axis of the lifting anchors

The boundary conditions decisive for the design of the anchors must be coordinated and documented bindingly with the precast factories as well as the companies responsible for transport and mounting. All transport conditions must be considered.

Step 1: the basic values of the unit are calculated. These are area, volume and centre of gravity.

Weight of the precast element

Equation (1) $\mathbf{F}_{\mathbf{G}} [kN] = \mathbf{V} [m^3] \times \rho_{\mathbf{G}} [kN/m^3]$

Step 2: the mould adhesion factor must be determined and the adhesion area defined.

Adhesion and form friction

Equation (2) $\mathbf{F}_{adh} [kN] = \mathbf{q}_{adh} [kN/m^2] \times \mathbf{A}_{f} [m^2]$

Step 3: the dynamic factor, the number of anchors and the anchor load for corresponding lifting and transport conditions are defined. The equations given below are examples and must be adapted to the actual transport conditions consistently. With axial load the factor for diagonal tension is set to 1.

Load case "Lifting with mould adhesion"

Equation (3) existing. $F_Q[kN] = (F_G[kN] + \rho_G[kN]) \times z / n \le perm. F_Q$ (per anchor type)

Load case "Lay down and tilt-up / with one-sided contact to the floor"

Equation (4) existing. F_Q [kN] = (F_G [kN] / 2) × Ψ_{dyn} / n ≤ perm. F_Q (per anchor type)

Load case "Transport with diagonal tension"

Equation (5) existing. F_Z [kN] = F_G [kN] × Ψ_{dyn} × z / n ≤ perm. F_Z (per anchor type)

In order to determine the load acting on an anchor all factors mentioned above must be taken into account. The user determines the relevant transport load cases and therewith identifies the force which acts on the anchor. Accordingly, the transport anchor must be chosen in a way that the existing F_Z resp. F_Q does not exceed the permissible load bearing capacity (see specific table in the particular anchor documentation). The maximum value from equation (3), (4) or (5) is decisive for the choice of the load class of the anchor. If it is not possible to determine the exact anchor load the transport anchor must be selected in such way that the overall load could be taken by a single anchor only.

Calculation example of a standard application

Precast concrete panel: b = 5.0 m; h = 2.50 m; d = 0.25 m

Boundary conditions:

Steel mould oiled, mould adhesion $q_{adh} = 1.0 \text{ kN/m}^2$, minimum concrete strength f_{cc} 15 N/mm² at first time of lifting. After the production of the concrete unit it is lifted out of the mould into vertical position (tilt-up with lateral tension) and transported with a 2-leg tackle and a diagonal tension with an inclination of max. 30°, hoisting velocity max. 90 m/min. \rightarrow Dynymic factor Ψ_{dyn} =1.3.

Unit weight:

Volume: V = b × h × d = 5.0 m × 2.50 m × 0.25 m = <u>3.125 m³</u>

Unit weight: $F_G = V \times \rho_G = 3.125 \text{ m}^3 \times 25 \text{ kN/m}^3 = \frac{78.125 \text{ kN}}{1000 \text{ km}^3}$

Mould adhesion:

Bond area: $A_f = b \times h = 5.0 \text{ m} \times 2.50 \text{ m} = \frac{12.50 \text{ m}^2}{12.50 \text{ m}^2}$ Mould adhesion: $F_{adh} = q_{adh} \times A_f = 1.0 \text{ kN/m}^2 \times 12.50 \text{ m}^2 = \frac{12.50 \text{ kN}}{12.50 \text{ kN}}$

Existing lateral tension when lifting with 2 anchors with cross beam:

existing $F_Q = ((F_G / 2) + F_{adh}) / n$ (load case mould adhesion) = ((78,125 kN / 2 + 12,50 kN) / 2 = 25,78 kN < perm. $F_Q = 31,5$ kN

Existing lateral tension when erecting with 2 anchors with cross beam:

existing $F_Q = (F_G / 2) \times \Psi_{dyn} / n$ (load case hoisting coefficient) = (78,125 kN / 2) × 1,3 / 2 = 25,39 kN < perm. $F_Q = 31,5$ kN

In this case the lateral tension with mould adhesion is decisive for the anchor design when lifting.

Existing diagonal tension 30° when transport with 2 anchors:

existing $F_Z = (F_G \times \Psi_{dyn} \times z) / n$ (load case diagonal tension 30°) = (78.125 kN × 1.3 × 1.15) / 2 = <u>58.4 kN</u> < perm. $F_Z = \underline{63 \text{ kN}}$

For the anchor choice the load case diagonal tension is decisive!

Minimum reinforcement: $2 \times Q188$ A both-sided, mesh cap Q188 A and 2 longitudinal steel bars Ø 16 mm, 2 Threaded transport anchors-straight tail (Ref.-No. 67M36) with 63 kN permissible capacity and one stirrup for lateral tension per anchor which covers the diagonal tension also for the further transport, moving and laying down at the construction site.

In general: A calculation of the centre of gravity must be done or it is already marked in the element plan. The installation of the anchor has to be done in consideration of the particular Installation and Application Instruction of the selected transport anchor.

Note:

If there is a tilt-up or turn-over during mounting the orientation resp. position of the lateral reinforcement must be considered. If necessary, this must be marked clearly for the mounting crew on the outer face of the concrete unit.

Boundary conditions

Concrete strength

The permissible load of the transport anchor systems has been proved with a concrete strength of f_{cc} **15 N/mm²** and includes safety factors given under "General notes" if the Installation and Application Instructions are followed correctly. If you have further questions please have a look on our website www.philipp-group.de or contact our technical hotline by phone +49 6021/4017- 318 or e-mail technik@ philipp-group.de.

Reinforcement layout

In general, a minimum reinforcement according to EN 1992 must be installed in the concrete units if no further minimum reinforcement in the specific Installation and Application Instructions is mentioned. An already existing static or constructive reinforcement can be taken into account for the minimum reinforcement. Mesh reinforcement or reinforcement bars are to be considered as equal.

Attention must be paid that the minimum reinforcement required for the transport anchor system only ensures the local load transfer into the concrete unit. The user is personally responsible for further transmission of load into the concrete unit.

Application restrictions

Lifting devices of transport anchor systems must be in compliance with the DGUV 100-500 that means be checked at least annually.

Only proper lifting devices and transport anchors are permitted to use.

Misuse regarding the load direction is not allowed (lever actions caused by rotating, tilting and swinging which may result in local concrete blow-out failures, breakage of transport anchor or lifting device).

Welding on the lifting devices is prohibited in any case!

Subsequent welding on the components of the transport anchor system is inadmissible.

An application for a repeated usage (e.g. ballasts for cranes) is only allowed if the Installation and Application Instruction of the specific transport anchor does not exclude it explicitly. The agreement with the approval report "Products, fasteners and structural components made of stainless steel" (DIBt Berlin, approval no.: Z-30.3-6) must be checked. When ordering the requirement for a repeated usage has to be mentioned separately.

Corrosion protection

When a standard transport anchor is installed the minimum concrete cover according to EN 1992 has to be taken. For an application outdoors, in humid rooms and where a concrete cover in accordance with EN 1992 is not possible we recommend transport anchor types in stainless steel.

In case of a longer storage of transport anchors, Cast-in lifting hoops or lifting devices under corrosive environmental conditions (e.g. free weathering) corrosion on the component may appear and cause a reduction of the load bearing capacity. Therefore, the components of the transport anchor systems can be supplied in different versions and are protected temporarily against corrosion during storage, transport and mounting.

All inserts of the Threaded transport anchor systems are supplied in galvanised quality by default. An installation of the threaded inserts in recessed position using recess formers and following fill-up with grouting mortar provides additional corrosion protection. Alternatively, only the threaded insert or even the complete transport anchor can be supplied in stainless steel.

Boundary conditions / marking

Anchors of the Spherical head anchor system can be supplied in black steel, electro or hot-dip galvanised and stainless steel. Hole anchors in black steel, electro and hot-dip galvanised. The Spherical head and Hole anchor systems are installed simply and safely in a recessed position using the corresponding recess formers. In order to improve the corrosion protection the recess can be filled-up with grouting mortar finally. Furthermore, a higher corrosion protection can be reached by installing recess formers in a recessed position (Picture 24).

Wire ropes used for Cast-in lifting hoops are available in bright as well as galvanised quality. The aluminium ferrule used with Cast-in lifting loops must not be placed near-surface of the concrete element. Necessary concrete cover for the ferrule has to be determined using the following equation.

> c_{Ferrule} ≥ **1.-2** * c_{min} acc. to EN 1992-1-1 chap. 4 and table. 4.4N acc. to DIN EN 1992-1-1/NA table NA.4.4

Cast-in lifting hoops with aluminium ferrules should not be used in concrete with a high chloride percentage because of the risk of corrosion. For this application a ferrule made of steel is more suitable and can be delivered by Philipp on request. An increased chlorine equivalent exists if the values given in the German standards DIN EN 206-1 and DIN 1045-2 are exceeded.

Marking

All components of the Transport anchor systems are marked according to the VDI/BV-BS 6205 Guideline "Lifting inserts and lifting insert systems for precast concrete elements" or DGUV 101-001 "Safety Rules for Transport anchors and systems for precast concrete units". The relevant guideline and marking is written in the Installation and Application Instruction of the specific transport anchor system.

The marking of the transport anchor system is made as follows:

- Stamping on the inserts resp. anchors
- Colour-coded marking rings on top of the installed threaded anchors
- Colour-coded tags at the Lifting loops with threaded end and Cast-in lifting hoops.

The marking of the Threaded transport anchors includes

- System: RD
- Load class: 30

The marking of the lifting devices includes

Manufacturer:	PHII IPP
	1 1 11 🗠 11 1

- System: RD
- Load class: 30
- Year of manufacturing: 2015
- CE mark

For more information about the installation in a recessed position please refer to the Application Instruction of the Spherical head lifting clutch.

Static systems

Colour code

Table 4: Colour code					
Threaded transport anchor system		Po	wer System SL	Cas	st-in lifting hoops
Permissible load [kg]	Colour code	Permissible load [kg]	Colour code	Permissible load [kg]	Colour code
500	Pastel orange	-	-	500	Pastel orange
800	Pure white	-	-	800	Pure white
1.200	Flame red	-	-	1.200	Flame red
1.600	Light pink	-	-	1.600	Light pink
2.000	Pastel green	2.000	Signal blue	2.000	Pastel green
2.500	Jet black	-	-	2.500	Jet black
4.000	Emerald green	-	-	4.000	Emerald green
-	-	5.000	Signal yellow	-	-
-	-	-	-	5.200	Curry
6.300	Light blue	-	-	6.300	Light blue
8.000	Silver grey	8.000	Clay brown	8.000	Silver grey
-	-	-	-	10.000	Claret violet
12.500	Sulfur yellow	-	-	12.500	Sulfur yellow
-	-	14.500	Salmon orange	-	-
15.000	Pastel orange	-	-	-	-
-	-	-	-	16.000	Blue lilac
20.000	Pure white	20.000	Emerald green	20.000	Beige
-	-	-	-	25.000	Clay brown
-	-	-	-	28.000	Pure white

The weight of 1,000 kg corresponds to 10 kN.

Our customers trust us to deliver. We do everything in our power to reward their faith and we start each day intending to do better than the last. We provide strength and stability in an ever-changing world.

Welcome to the PHILIPP Group

For more information visit our website: www.philipp-group.de